Hydrogen Isotope Fractionation in Aqueous Alkali Halide Solutions

نویسنده

  • Masahisa Kakiuchi
چکیده

The D/H ratios of hydrogen gas in equilibrium with aqueous alkali halide solutions were determined at 25 °C, using a hydrophobic platinum catalyst. The hydrogen isotope effect between the solution and pure water changes linearly with the molality of the solution at low concentrations, but deviates from this linearity at higher concentration for all alkali halide solutions. The magnitude of the hydrogen isotope effect is in the order; Kl > Nal > KBr > CsCl ^ NaBr > KCl > NaCl > LiCl, at concentrations up to a molality of 4 m. The sign and trend of the hydrogen isotope effect is different from that of oxygen. In aqueous alkali halide solutions, the hydrogen isotope effect is influenced by both the cation and the anion species, while the oxygen isotope effect is mainly caused by the cation species. This suggests that the mechanism of hydrogen isotope fractionation between the water molecules in the hydration spheres and the free water molecules differs from the mechanism of the oxygen isotope fractionation. The hydrogen and oxygen isotope effects for alkali halides, except LiCl and NaCl, may be influenced by changes in energy of the hydrogen bonding in free water molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculations of the Oxygen Isotope Fractionation between Hydration Water of Cations and Free Water

The oxygen isotope fractionation factors between the hydration complex of the alkali ions in the gas phase and a free water molecule have been computed on the basis of the energy surfaces calculated by Kistenmacher, Popkie and Clementi for a water molecule in the field of an alkali ion. For comparison with recently measured oxygen isotope fractionation factors in aqueous alkali halide solutions...

متن کامل

O ' NEIL AND TAYLOR Oxygen Isotope Fractionetlon

Oxygen isotopes have been equilibrated between muscovite and aqueous alkali chloride solution and between paragonite and alkali chloride solution in the temperature range of 400ø-650øC at I and 1.5 kb fluid pressure. Isotopic equilibrium was inferred from the fact that compatible fractionation factors were obtained using 3 different chemical reactions to produce the mica: (1) muscovite or parag...

متن کامل

Effects of alkali metal halide salts on the hydrogen bond network of liquid water.

Measurements of the oxygen K-edge X-ray absorption spectrum (XAS) of aqueous sodium halide solutions demonstrate that ions significantly perturb the electronic structure of adjacent water molecules. The addition of halide salts to water engenders an increase in the preedge intensity and a decrease in the postedge intensity of the XAS, analogous to those observed when increasing the temperature ...

متن کامل

Long-range hydrogen-bond structure in aqueous solutions and the vapor-water interface.

There is a considerable disagreement about the extent to which solutes perturb water structure. On the one hand, studies that analyse structure directly only show local structuring in a solute's first and possibly second hydration shells. On the other hand, thermodynamic and kinetic data imply indirectly that structuring occurs much further away. Here, the hydrogen-bond structure of water aroun...

متن کامل

Key words: Fractionation of hydrogen isotopes, Aqueous lithium chloride solution. Hydrophobic platinum catalyst, Dependence of D/H fractionation on molality, Comparison of hydrogen and oxygen isotope effects. Introduction

The D/H ratio of hydrogen gas in equilibrium with water vapor over aqueous lithium chloride solutions was measured at 25 °C, using a hydrophobic platinum catalyst. Experimental details are described. The hydrogen isotope effect between the solution and pure water depends linearly on the LiCl concentration up to ca. 12 m, and at higher concentrations a marked deviation from linearity takes place...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013